

ПОРТАТИВНЫЙ АНАЛИЗАТОР СЕТЕВЫХ ПАРАМЕТРОВ

NP45

CE

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Вступление

Благодаря процессорам DSP и архитектуре ARM, а также встроенной операционной системе (uClinux), анализатор сетевых параметров NP45 может обрабатывать большой объем электрических параметров. Устройство обладает расширенными и эффективными измерительными функциями для проверки системы энергоснабжения, благодаря чему можно быстро и удобно определить качество электрической сети и электрические характеристики. Анализатор оснащен цветным ЖК-дисплеем и большим экраном, а также удобной в использовании клавиатурой.

Основные характеристики:

- Отображение графика формы волны реального времени (4 напряжения/4 тока)
- Среднеквадратичное измерение половины цикла (напряжение и ток)
- Интуитивное управление
- Широкий ассортимент дополнительных токовых клемм
- Элемент измерения постоянного тока
- Измерение и отображение гармоник до 100 раз.
- Регистрация переходных состояний
- Отображение векторов, тенденций, гистограмм и таблиц событий
- Активная мощность, реактивная мощность, полная мощность и энергия, коэффициент сдвига мощности и коэффициент фактической мощности
- Трехфазная асимметрия (напряжение и сила тока)
- Мерцание
- Пусковой ток
- Обнаружение и регистрация скачков и провалов напряжения, резких колебаний и прерываний напряжения.
- Обнаружение по стандарту EN50160 или сетей с заданными пользователем пределами.
- хранение данных и скриншотов (возможно отображение или передача ПК)
- Благодаря LAN-интерфейсу возможно удаленное общение анализатора в реальном времени с компьютером, удаленное управление анализатором и считывание измеренного значения.
- Встроенная карта памяти 32G.
- Поддержка связи Wi-Fi.

Анализатор и его принадлежности

\bullet	Анализатор сетевых параметров NP 45	1
ullet	CD (Компьютерная программа + руководство)	1
ullet	Кабели для измерения напряжения	5
ullet	Зажимы «Крокодил»	5
ullet	Блок питания	1
ullet	Кабель питания	1
ullet	Сумка	1
ullet	Ремень	1

Дополнительное оснащение Токовый трансформатор АС

- KLC8C-5A (5A)
- CTC0080 (50A)
- CTC0130 (100Å)
- CTC1535 (1000Å)

Катушка Роговского АС

- SY-1500A (1500A)
- PY-3000A (3000A)
- PY-5000A (5000A)
- SY-6000A (6000A)

Трансформатор тока AC/DC

• ETCR035AD (1000A)

Общая информация о безопасности

Анализатор разработан и изготовлен в строгом соответствии с IEC61010-1 и соответствует категориям установки САТ III 1000 V и САТ IV 600 V и уровню загрязнения II. Во избежание травм и повреждений анализатора или подключенного к нему оборудования прочтите следующие примечания и предупреждения.

Для предотвращения пожара или поражения электрическим током необходимо:

- Внимательно прочитать инструкцию перед началом работы с анализатором и его принадлежностями.
- Внимательно прочитать все команды.
- Избегать работы без посторонней помощи.
- Избегать использования анализатора вблизи взрывоопасных газов, пара или влаги.
- Для обеспечения оптимальной защиты использовать анализатор способом, предусмотренном в руководстве.
- Использовать только изолированные токовые зонды, тестовые соединения и адаптеры, поставляемые вместе с анализатором или описанные как совместимые с анализатором.
- Держать пальцы только за крышками зондов.
- Перед использованием проверить анализатор, датчики напряжения, тестовые соединения и принадлежности на наличие повреждений и заменить поврежденные компоненты. Проверить, нет ли трещин или сколов в пластике. Особое внимание следует обратить на изоляцию в непосредственной близости от контактов.
- Работа анализатора должна быть проверена путем измерения напряжения известной величины.
- Отсоединить все неиспользуемые датчики, соединения и аксессуары.
- Всегда подключать блок питания к сети, прежде чем подключать к нему анализатор.
- Не прикасаться к элементам под высоким напряжением: напряжение > AC RMS 30V или DC 60V.
- Вход заземления использовать только для заземления анализатора и не подавать на него никакого напряжения.
- Не подключать анализатор к напряжению выше допустимого.
- Использовать только правильную категорию измерения (САТ), соответствующие зонды для измерения напряжения и тока, тестовое соединение и блок питания.
- Не измеряйте напряжения, выходящего за пределы рабочего диапазона зондов или клемм.
- Всегда соблюдать местные и национальные стандарты безопасности. В средах, где кабели под напряжением

подвергаются воздействию вредных факторов, используйте средства индивидуальной защиты, такие как утвержденные резиновые перчатки, средства защиты лица и противопожарную одежду для предотвращения поражения электрическим током и возникновения электрической дуги.

- При подключении или отключении гибких токовых зондов необходимо соблюдать особую осторожность: выключать тестируемое устройство или носить специальную защитную одежду.
- Не размещать металлические детали в контактах.
- Всегда использовать блок питания, поставляемый вместе с анализатором.

Анализатор и его принадлежности	2
Дополнительное оснащение	2
Катушка Роговского АС	2
Общая информация о безопасности	3
Глава 1 Введение	7
1.1 Конструкция анализатора	7
1.2 Описание работы кнопок	8
1.3 Входные соединения	9
1.4 Быстрое обсуждение режимов измерения	10
1.5 Экранные и функциональные клавиши	11
Глава 2 Основные действия	12
2.1 Подставка и ремень	12
2.2 Включение и выключение	13
2.3 Яркость экрана	13
2.4 Обновление встроенного программного обеспечения	13
2.5 Входные соединения	14
2.6 Настройки пользователя	15
2.7 Конфигурация анализатора	16
2.8 Использование памяти и компьютера	18
Глава 3 Примеры применения	22
3.1 Диапазон	22
3.2 Напряжение/Ток/Частота	23
3.3 Провалы и перенапряжения	24
3.4 Гармоники	28
3.5 Мощность и энергия	30
3.6 Мерцание	32
3.7 Асимметрия	33
3.8 Неопределённые состояния	35
3.9 Пусковой ток	36
3.10 Запись курса	38
3.11 Регистратор	38
3.12 Мониторинг	40

Глава 4 Обслуживание и поддержка	46
4.1 Гарантия	46
Глава 5 Спецификации	47
5.1 Измерение частоты	47
3.2 Входы напряжения	47
3.1 Токовые входы	47
5.4 Система дискретизации	47
5.5 Режимы и параметры измерения	47
5.6 Диапазон, разрешение и точность измерения	48
5.7 Комбинации проводов	51
5.8 Общие черты	52
5.9 Спецификация дополнительных токовых зондов	53
Глава 6 Коды исполнения	55

Примечание: Содержание этого документа может быть изменено без предварительного уведомления.

Этот документ может содержать технические неточности или ошибки печати. Настоящий документ содержит только указания по использованию устройства и не является гарантией в любой форме.

Глава 1 Введение

В этой главе пользователь может ознакомиться с основными принципами работы устройства.

1.1 Конструкция анализатора

- 1: дисплей
- 2: клавиатура
- 3: индикатор зарядки
- 4: входы напряжения
- 5: вход токового зонда
- 6: вход заземления
- 7: интерфейс адаптера мощности
- 8: интерфейс приемника GPS/BEIDOU
- 9: интерфейс USB-Host
- 10: интерфейс LAN

1.2 Описание работы кнопок

	1. Включение / выключение питания.
	2. Обязательное выключение
	питания: при включенном питании
	нажмите эту кнопку примерно на 10
	секунд, анализатор будет выключен.
	Регулировка яркости: Нажмите эту
	кнопку несколько раз для
	регулировки яркости экрана.
	Функциональная кнопка: определена
F1 🔨 F5	функция, отображаемая в строке
	меню на экране.
	Кнопка направления: позволяет
	перемещать курсор и увеличивать
	изображение формы волны
∇	Кнопка ввода: нажмите эту кнопку,
	чтобы подтвердить текущий выбор
	Кнопка быстрого доступа к функции
SCOPE	осциллографа.
	Кнопка быстрого доступа в главном
MENU	меню: быстрый доступ к
MENO	интерфейсу главного меню.
	Функциональная кнопка
MONITOR	мониторинга: Позволяет ввести
	функцию мониторинга.
	Кнопка быстрого доступа для
	конфигурации параметров: быстрый
SETUP	доступ к интерфейсу конфигурации
	параметров.
	Кнопка управления файлами:
MEMORY	открывает доступ к интерфейсу
	управления файлами.
	Кнопка сохранения: в режиме
	измерения нажмите эту кнопку,
SAVE	чтобы сохранить скриншот и
	данные измерения.
	Индикатор зарядки: красный:
	зарядка продолжается
	зелёный: полностью
	заряженный
В следующем	тексте знак 【*】соответствует данной

В следующем тексте знак 【*】 соответствует данной кнопке.

Зарядка аккумулятора и подготовка к работе

При поставке устройства его встроенный аккумулятор может быть разряжен, поэтому рекомендуется зарядить его перед запуском. Первая зарядка должна длиться не менее 6 часов; когда цвет диода зарядки меняется с красного на зеленый, это означает, что аккумулятор полностью заряжен. Анализатор автоматически отключает зарядку батареи, когда она полностью заряжена. Перед использованием блока питания проверьте, соответствует ли его рабочее напряжение и диапазон частот параметрам локальной электросети. Во избежание падения емкости аккумулятора, его следует заряжать не менее двух раз в год.

	Индикатор емкости аккумулятора, зеленый - достаточный заряд, красный - низкий уровень.							
E 7	Индикатор зарядки.							
	Зарядка завершена.							
₽	Подключен USB-накопитель.							
1	Проводная сеть подключена.							
?	Беспроводная сеть подключена.							

Значок на строке индикатора состояния

1.3 Входные соединения

Анализатор имеет четыре входа BNC для подключения зонда измерения тока и пять штекеров для измерения напряжения. В случае 3-фазной системы соединение должно быть выполнено, как показано на рисунке выше.

Начните с размещения зондов вокруг фазных проводов L1/A, L2/B, L3/C и N.

Зонды имеют маркировку для определения правильной полярности сигнала.

Далее следует выполнить соединения для измерения напряжения, начиная с заземления и переходя к N, A (L1), B (L2), C (L3). Для обеспечения точности измерения всегда подключайте заземление.

Для однофазных сетей используйте вход напряжения A (L1), вход тока A (L1) и вход заземления. Фаза напряжения L1/A является фазой отсчета для всех измерений.

1.4 Быстрое обсуждение режимов измерения

♦ МЕНЮ

При помощи кнопки [MENU] доступны следующие измерения:

МОНИТОР

Нажмите кнопку **(MONITOR)**, чтобы войти в функцию мониторинга, иметь возможность контролировать среднеквадратические параметры, гармоники, мерцание, скачки, падения, резкие изменения напряжения, прерывания, асимметрии и частоты. На экране гистограммы показано изображение ниже:

Monitor	230V;5	0Hz;CTC1535	4 2017	-06-15 07:45:34						
(*) 0:16:39										
22.30	903.0	% MAX ∏ 2	2.30V MIN	22.30V						
			Π	Limit						
			Π.	Allow d%						
Vrms	llu.	<u>ي</u>	<u> </u>	∑→ Hz						

1.5 Экранные и функциональные клавиши

Анализатор имеет различные типы экранов, позволяющие отображать результаты измерений различными способами.

Экран таблицы

Volts/Amps/Her	tz 230V;5	0Hz;CTC1535	2017-06-15 07:52:30		
Freq = 50.0	OHz	0:03:03			
	L1:	L2:	L3:	N	
Urms(V)	220.00	220.00	220.00	0.02	
Upk(V)	311.21	311.17	311.17	0.07	
CF	1.41	1.41	1.41	3.77	
	L1:	L2:	L3:	N	
Irms(A)	0.17	0.26	0.34	0.06	
lpk(A)	0.35	0.55	0.67	0.18	
CF	2.09	2.12	1.97	3.18	
-			Trend	Hold	
F1	F2	F3	F4	F 5	

На этом экране отображается немедленный предварительный просмотр важных значений измерений в режиме Напряжение/Ток/Частота.

Описание экрана:

1 В заголовке экрана отображается текущий режим измерения, некоторая информация будет отображаться в виде выпадающего списка.

- 2 В таблице в середине экрана отображаются параметры и значения измерений, которые зависят от режима измерения, номера фазы и конфигурации проводки.
- 3 Опция функции расположена в нижней части экрана, соответствующей кнопкам **[F1] ~ [F5]**.

Описание функциональных кнопок:

- **[F4]** : Доступ к экрану «Тенденции».
- [F5] : Переключение между опциями СТАРТ и СТОП.

Экран тенденций

Volts/Amps/H	lertz	230	V;50Hz	;CTC1535		(20	17-06-15	09:01:10
			\odot	0:02:06				
U rms(V)	L1:	220.00	L2:	220.00		220.00	N: 0.	02
230								1
210								
210 230								
<mark>210</mark> 220								
0 10m	8r	n	6m		4m		2m	N
Tab						Back		Hold

В окне «Тенденция» отображаются значения измеренных параметров, изменяющихся с течением времени. Время отображается на горизонтальной линии, график тенденции строится постепенно от правого края экрана.

Описание функциональных кнопок:

- [F1] : Переключение отображаемых параметров
- [F4] : Возврат к экрану таблицы.
- [F5] : Переключение между опциями СТАРТ и СТОП.

Глава 2 Основные действия

2.1 Подставка и ремень

Анализатор имеет подставку для наблюдения за экраном под углом, когда устройство находится на плоской поверхности. Показанный на рисунке ремень является частью стандартного оборудования анализатора.

2.2 Включение и выключение

При нажатии кнопки Power прозвучит один звуковой сигнал и отобразится начальный интерфейс. Нажмите кнопку Power ввключенном состоянии, анализатор попросит пользователя выключить прибор, после подтверждения прибор выключится.

Обязательное выключение: Анализатор будет выключен, если пользователь нажмет кнопку Power примерно через 10 секунд после включения питания.

2.3 Яркость экрана

Экран анализатора имеет 4 уровня яркости, которые можно переключать с помощью кнопки изменения яркости. Когда анализатор работает от аккумулятора, рекомендуется использовать низкую яркость для снижения энергопотребления.

2.4 Обновление встроенного программного обеспечения

В случае обнаружения ошибки при работе с анализатором обратитесь в службу технической поддержки для загрузки пакета обновления. Перед подключением анализатора пакет обновления должен быть помещен в корневой каталог диска U. После того, как устройство

распознало диск U, войдите в пользовательский интерфейс конфигурации из главного меню, нажмите кнопку **[**F1**]** для входа в интерфейс обновления.

User	230V;	:50Hz;CTC1535	▥≌/	2018-02-27 10:37:50	User	230V;50Hz;CTC0130	🛛 🛱 🕼 / 2018	8-02-17 03:36:56
Versio	Version:				Software:1.0.0_ Firmware:0.2.36	201803081026 6		
Name:		root						
Langua	age:	English						
Sleep:		OFF				 Software 		
		Date&Time						
		LAN SETUP						
		WLAN SETUP						
Update	Phase Color			Back	Execute			Exit

Существуют типы файлов обновления программного обеспечения, прошивок и системы. Выберите файлы, которые вы хотите обновить, анализатор сообщит вам о завершении обновления, затем отключите U-диск, выключите анализатор и включите питание для завершения обновления.

В процессе обновления могут появиться коды ошибок, указанные в таблице ниже, а также способ их устранения.

Код ошибки	Способ устранения						
«ErrCode: 0000 XXXX»	Может быть повреждено Flash, замените Flash.						
«ErrCode: 0001 XXXX»	Модель SPI FLASH не поддерживается, проверьте файл обновления.						
«ErrCode: 0003»	Ошибка проверки данных прошивки, проверьте файл обновления.						
«ErrCode: 0005 XXXX»	Неправильное состояние, пожалуйста, отправьте обратное сообщение XXXX производителю.						
«ErrCode: 0010»	Серьезное превышение времени. Не выключайте устройство. Еще раз обновите прошивку.						
«ErrCode: 0011»	Попробуйте обновить прошивку еще раз.						
ХХХХ означает подробное сообщение об ошибке, пожалуйста,							
отправьте обратное сообщение производителю.							

2.5 Входные соединения

Убедитесь, что анализатор соответствует требованиям тестируемой системы. Следует проверить: конфигурацию проводки, номинальную частоту, номинальное напряжение, коэффициент тока на клеммах и диапазон.

 \diamond

Анализатор имеет четыре входа BNC для подключения зонда измерения тока и пять штекеров для измерения напряжения. По возможности перед подключением анализатора всегда отсоединяйте питание от тестируемой системы и всегда используйте соответствующие средства индивидуальной защиты.

Для 3-фазной системы соединение должно быть выполнено, как описано в разделе 1.3.

2.6 Настройки пользователя

ерфейс настроек пользователя							
User	230V;50Hz;CTC1535	- 💷 🕎 🖊 2018-02-27 10:37:50					
Version:	1.0.0						
Name:	root						
Language:	English						
Sleep:	OFF						
	Date&Time						
	LAN SETUP						
	WLAN SETUP						
Update Ph	ase Color	Back					

Имя пользователя, язык, время спящего режима, системное время и сетевые настройки могут быть установлены в этом интерфейсе с помощью кнопок [▲] [▼] [◀] [▶] и [ENTER].

Время спящего режима: если после установки времени спящего режима не будет нажата ни одна кнопка, яркость устройства автоматически снизится до самого низкого уровня по истечении установленного времени, что продлит рабочее время устройства только при питании от аккумулятора. При нажатии любой кнопки яркость возвращается к исходным настройкам. \diamond

Нажмите **[F2]**, чтобы установить цвет фазы в соответствии с местным стандартом для определения цвета фазы.

Различная фаза, разный цвет для представления значения измерения каждой фазы. Настройки цвета по умолчанию для фаз A (L1), B (L2), C (L3), N и GND - желтый, зеленый, красный, синий и зеленый соответственно.

2.7 Конфигурация анализатора

Setu	р		3P WYE			· · · · · · · · · · · · · · · · · · ·	2018	-02-15 08:5	52:43
	Config: Freq: Vnom:	:	3P WYE 50Hz 230V	3	BP WYE برر			L1 GND N L2 L3	
	Clam	р	Ira	nge	V F	Ratio	I	Ratio	
	PY-300	OA	A 30		1:1		1:1		
	Config		req	Vn	om	Clam	пр	Limits	

Настройка интерфейса

При включении в верхней части экрана отображается текущая настройка. Проверьте правильность даты и времени системных часов. Выбранная конфигурация проводки должна соответствовать конфигурации тестируемой системы. Кнопка

(SETUP) позволяет получить доступ к меню для отображения и изменения настроек анализатора.

Настройки сгруппированы в четыре функциональных раздела:

(F1): Конфигурация проводки. **(F2)**: Настройки номинальной частоты.

[F3]: Настройки номинального напряжения. **[F4]**: Настройки токовых клемм.

[F5] : Настройки ограничений мониторинга: загрузки, записи и установки ограничений мониторинга качества энергии.

Пределы мониторинга

Анализатор имеет настроенный набор пределов в соответствии с EN50160 и предлагает две определяемые пользователем опции, которые пользователи могут изменять в соответствии со стандартом EN50160 и сохранять как определяемый пользователем набор пределов.

Пределы	Настройки
Напряжение	2 возможных процентных значения (100% и
	регулируемое): каждое с регулируемым верхним
	и нижним пределом.
Гармоники	Для гармоник 2-25 и THD 2 возможных
	процентных значения (100% и регулируемое):
	каждое с регулируемым верхним пределом.
Мерцание	Предельная кривая (тип лампы). 2 возможных
	процентных значения (100% и регулируемое):
	регулируемый процент с регулируемым верхним
	пределом.
Провалы (*)	Пороговое значение, гистерезис, допустимое
	количество недель.
Перенапряжения (*)	Пороговое значение, гистерезис, допустимое
	количество недель.
Прерывания (*)	Пороговое значение, гистерезис, допустимое
	количество недель.
Внезапные	Допуск напряжения, стабильное время,
изменения	минимальный шаг, минимальное значение,
напряжения (*)	допустимое количество недель.
Асимметрия	2 возможных процентных значения (100% и
	регулируемое): регулируемый процент с
	регулируемым верхним пределом.
Частота	2 возможных процентных значения (100% и
	регулируемое): каждое с регулируемым верхним
	и нижним пределом.

(*): Конфигурации также применимы к режиму измерения.

2.8 Использование памяти и компьютера

Анализатор может сохранять скриншоты и данные в память, а пользователи могут просматривать, удалять и копировать эти данные. Анализатор также может быть подключен к компьютеру, который может использоваться для удаленного управления анализатором.

♦ Интерфейс SAVE

Нажмите кнопку **[SAVE]** для сохранения текущего скриншота или данных измерений.

Volts/Amps/Hertz	3P WYE	1 🔁 👍 / 2018-	02-17 05:50:24
Save Scree	n:		
Save Data:			
Save As:			
			7
File name:	Screen 18		
2		Cancel	Save
		 C C I I I C C I	Curo

Используйте кнопки 【▲】【▼】, чтобы выбрать тип сохраненных файлов.

Используйте кнопку **[ENTER]**, чтобы войти в интерфейс редактирования и отредактировать имя файла.

Нажмите кнопку **[F5]**, чтобы завершить сохранение и вернуться к исходному интерфейсу.

♦ Интерфейс MEMORY

Memory	3P WYE		1 🔁 👍 / 2018	3-02-17 06:17:29
TIM	E	DESCRI	PTION	TYPE
2018-02-14	01:08:15	Scree	n 1	
2018-02-15	08:52:45	Scree	n 2	1000
2018-02-16	00:42:27	Scree	n 3	27.57
2018-02-16	01:01:50	Scree	n 4	23.57
2018-02-16	01:03:00	Scree	n 5	28.00
2018-02-16	01:18:32	Scree	n 6	28.07
2018-02-17	06:16:54	Data S	iet 1	
	To USB	View	Delete	Back

Кнопка MEMORY позволяет получить доступ к интерфейсу списка сохранений, который показывает время сохранения, имя и тип сохраненных файлов. Используйте кнопки 【▲】【▼】 для выбора конкретных файлов. После доступа к интерфейсу сохранения вставьте диск U и подождите несколько секунд, затем в строке состояния появится значок диска, когда загорится «TO USB», нажмите кнопку 【F2】, чтобы скопировать выбранные в данный момент файлы на диск U, отобразится индикатор выполнения, указывающий процесс копирования. Когда копирование будет завершено, отсоедините U-диск, затем подключите его к компьютеру для просмотра содержимого.

Описание функциональных кнопок:

- **[F2]** : Скопируйте файл на U-диск после вставки U-диска и выделения символа кнопки.
- [F3]: Отобразите выбранный файл записи.
- **[F4]**: Удалите выбранный файл записи.
- [F5]: Возврат к предыдущему меню.
- Использование компьютерного программного обеспечения
 Требования к установке PQA View_Setup
 Процессор: процессор выше 1 ГГц.

Память: более 2G.

Дисплей: Монитор с разрешением VGA или выше (рекомендуемое разрешение 1024 × 768 или выше).

Жесткий диск: более 100М.

Сетевая карта: Сетевая карта 10М/100М.

Операционная система: Windows Vista или более поздняя версия. Версия Microsoft Office: Офис 2007 или новее.

Настройки сети

Интерфейс LAN настроен на связь между устройством и компьютером.

Анализатор оснащен LAN-интерфейсом для связи с ПК. С помощью программного обеспечения прилагаемого ΒЫ можете удаленно анализатором, управлять файлы, загружать сохраненные анализировать данные и создавать отчеты на своем компьютере. пользователь Кроме того, может использовать программное обеспечение компьютера для просмотра данных и получения снимка экрана, скопированного с диска U.

Выберите 【LAN SETUP】 в опции 【User】 как показано на рисунке ниже:

User	3P WYE	12018	3-02-17 07:17:36
LAN SETUP			
IP In-us	se: 192.168.	99.153	
IP Setu	qı		
$^{\circ}$ Use	DHCP		
Stati	ic		
	IP Address:	192.168.99.153	
	Net Mask:	255.255.255.0	
	Gateway:	192.168.99.1	
		Cancel	Ok

Подключите анализатор к компьютеру одним сетевым кабелем, установите разные IP-адреса анализатора и компьютера, они должны находиться в том же сегменте сети. Например: Если IP-адрес на ПК 192.168.1.XXX, то IP-адрес в анализаторе также должен быть 192.168.1.XXX.

При правильной настройке IP-адреса анализатор подключается к сети одним новым кабелем. Откройте программное обеспечение PQA View, выберите 【auto connection】 или 【manual connection】 (введите IP-адрес вручную) в опции 【file】, после успешного подключения будет отображен операционный интерфейс, имитирующий анализатор, и пользователь сможет загрузить сохраненный файл в прибор, как показано ниже.

Настройки WLAN

Выберите 【WLAN SETUP】 в опции 【User】 как показано на рисунке ниже:

- [F1]: Открытие / закрытие беспроводной сети.
- [F2]: Доступ к выбранной беспроводной сети

[F5]: Выход из настроек беспроводной сети

Откройте беспроводную сеть и выберите беспроводной маршрутизатор, который вы хотите подключить, пользователь будет уведомлен, когда назначенный IP-адрес отобразится в правой части дисплея. Подключите ноутбук или компьютер с беспроводной связью к одному и тому же беспроводному маршрутизатору, затем запустите на компьютере программу PQA View, выберите пункт (auto connection) или (manual connection) (введите IP-адрес вручную) в опции (file) для дистанционного управления анализатором и загрузки данных измерений.

После установки PQA View_Setup выберите пункт **[User Manual]** в качестве опции **[**help**]**, чтобы узнать, как использовать программное обеспечение PQA View.

Глава 3 Примеры применения

3.1 Диапазон

В режиме диапазона напряжения и тока тестируемой энергосети они отображаются в виде графиков формы волны. Отображаются также числовые значения таких данных, как фазовое напряжение, фазовый ток, частота и т.п. Экран с графиком формы волны обеспечивает осциллографическое изображение напряжения и тока с коротким временем обновления. В заголовке экрана отображаются соответствующие значения среднеквадратического напряжения/тока. Канал A (L1) является справочным каналом.

Описание функциональных кнопок:

[F1]: Выберите набор графиков формы волны для отображения: U отображает все напряжения, а I - все токи. L1, L2, L3 и N (нейтраль) одновременно отображают напряжение и ток выбранной фазы.

【 F2 】: Нажмите эту кнопку, чтобы автоматически настроить отображение формы волны в соответствии с экраном для лучшего наблюдения.

【F3】: Включает или выключает курсор. При включении курсора в заголовке экрана отображается значение хода волны на позиции курсора. Переместите курсор, нажав на 【◀】 или 【►】.

【F4】: Включает /выключает функцию Zoom. Когда активирована функция Zoom, можно увеличить масштаб, нажимая кнопки направления.

[F5**]** : Переключение между опциями СТАРТ и СТОП.

Как только начнется измерение, нажмите кнопку 【 SAVE 】 для сохранения текущего скриншота или измеренных данных.

3.2 Напряжение/Ток/Частота

Функция используется для измерения стабильного напряжения, тока, частоты и пиковых коэффициентов. Пик-коэффициент (CF) указывает масштаб нарушения: CF, равный 1,41, означает отсутствие нарушений, а CF выше 1,8 означает высокий уровень нарушений. Этот экран позволяет бегло оценить работу системы, прежде чем детально рассмотреть ее с использованием других режимов измерения.

Экран таблицы

Vc	olts/Amps/Hertz	z 3P WYE		(11) 201	.8-02-16 01:01:48
	Freq = 50.00	Hz	0:00:23		
		L1	L2	L3	N
	Urms(V)	230.01	230.00	229.99	0.02
	Upk(V)	325.34	325.32	325.30	0.07
	CF	1.41	1.41	1.41	3.91
	_	L1	L2	L3	Ν
	Irms(A)	0.01	0.01	0.02	0.00
	lpk(A)	0.02	0.03	0.03	0.01
	CF	2.08	1.86	1.82	3.43
				Trend	Hold

Количество столбцов в таблице зависит от конфигурации энергосети. Номера в таблице являются текущими значениями, которые могут изменяться в любой момент. Изменения этих значений сохраняются с момента начала измерения. Запись отображается на экране тенденций.

Нажмите кнопку 【SAVE】 для сохранения текущего скриншота или измеренных данных.

Описание функциональных кнопок:

- **[F4]** : Доступ к экрану «Тенденции»
- [F5] : Переключение между опциями СТАРТ и СТОП.

♦ Тенденция

Volts/Amps/H	lertz	ЗP	WYE			(11) 20)18-02-	16 01:0	2:56
			\odot	0:02:06					
U rms(V)	L1:	220.00	L2:	220.00		220.00	N:	0.02	,
230									— <u>1</u>
210 230									
									-2
210 230									
									-6
<mark>210</mark> 220									
\$									_
10m	8r	n	6m		4m		2m		¥Ŋ
Tab						Back		Hold	

Тенденция записывает данные, измеренные за последние десять минут, а затем строит график, начиная с правой стороны экрана. Показания в заголовке соответствуют последнему значению на графике (первое значение справа).

Описание функциональных кнопок:

[F1]: Изменение между параметрами, отображаемыми на экране тенденции, их содержание отображается в заголовке.

- [F4]: Вернуться к экрану таблицы
- [F5]: Переключение между опциями СТАРТ и СТОП.

3.3 Провалы и перенапряжения

Функция «Провалы и перенапряжения» регистрирует провалы и перенапряжения, а также резкие перепады напряжения.

Провалы и перенапряжения — это внезапные отклонения от нормального напряжения. Масштаб скачка может варьироваться от 10 до 100 В. Продолжительность может варьироваться от половины цикла до нескольких секунд, как определено в стандарте IEC61000-4-30.

Во время провала напряжение падает, во время скачка напряжение увеличивается. В 3-фазных системах провал начинается, когда напряжение на одной или нескольких фазах падает ниже порога провала, и заканчивается, когда напряжение на всех фазах достигает значения, равного, как минимум сумме порога провала и значения гистерезиса. Скачок начинается, когда напряжение на одной или нескольких фазах возрастает выше порога скачка, и заканчивается, когда напряжение на одной или нескольких фазах возрастает выше порога скачка, и заканчивается, когда напряжение на всех фазах достигает значения, равного, как минимум, разнице между порогом скачка и значения гистерезиса. Граничными условиями для провалов и скачков являются пороговые значения и гистерезис. Провалы и перенапряжения характеризуются

длительностью, масштабом и продолжительностью. Это объясняется на рисунках 3-3-1 и 3-3-2.

Рис. 3-3-1 Характеристики провала напряжения

Рис. 3-3-2 Характеристики перенапряжения

Во время прерывания напряжение падает ниже своего номинального значения.

В 3-фазных системах прерывания начинается, когда напряжение на всех фазах опускается ниже порогового значения, и заканчивается, когда напряжение на всех фазах достигает значения, равного, как порогового значения минимум сумме прерывания И значения гистерезиса. Граничными условиями для прерывания являются пороговые значения и гистерезис. Прерывания характеризуются длительностью, масштабом и продолжительностью. Это объясняется на рис. 3-3-3.

Рис. 3-3-3 Характеристики прерывания напряжения

Внезапные быстрые переходы изменения напряжения это напряжения среднеквадратического между двумя стабильными состояниями. Внезапные изменения напряжения регистрируются на основе стабильного допуска напряжения, времени стабильности, минимальной компенсации и минимального значения детектирования. Когда изменение напряжения превышает порог падения или скачка, оно рассматривается как падение или скачок, а не как внезапное изменение напряжения. В списке событий отображается изменение время перехода. Подробный список показывает напряжения И максимальное отклонение напряжения от номинального. Тенденция изменения напряжения представлена на рис. 3-3-4.

Рис. 3-3-4 Характеристики внезапного изменения напряжения

Помимо напряжения также регистрируется ток. Это позволяет наблюдать причины и последствия отклонений. Функциональная кнопка **[** F2 **]** позволяет получить доступ к таблицам событий, представляющим события напряжения в хронологическом порядке.

♦ Тенденция

Dips&Swells		3P WY	E			201	.8-02-1	6 01:18	3:30
EVENTS:	12		ġ	0:00:28					
U(V)	L1:	229.78	L2:	229.71		229.74		0.02	
240 0									1
240 0									~
240 0									
230 0		40s		30s		20s	10s		
Tab		Events	0	Cursor	0	Zoom n Off		Hold	

Как напряжение, так и ток регистрируется, чтобы помочь пользователю наблюдать за причиной отклонения.

Описание функциональных кнопок:

[F1]: Изменение между тенденциями напряжения и тока, в заголовке отображаются параметры.

[F2] : Доступ к таблице событий

【F3】: Включение/выключение курсора, удаление курсора с помощью кнопок **【**◀**】 【**▶**】** после его включения.

[F4] : Включает/выключает функцию Zoom.

[F5]: Переключение между опциями СТАРТ и СТОП.

Критерии событий, такие как пороговое значение, гистерезис и другие, имеют значения по умолчанию, но они могут быть настроены пользователем. Доступ к меню настройки осуществляется нажатием кнопки [SETUP], в нем можно установить ограничения.

Таблицы событий

Dips&Swells	3P W	ΥE		2018-02-16 01:18:35
EVENTS :	1/10	0:00:	35	
	TIME	TYPE	LEVEL	DURATION
2018/02 2018/02 2018/02 2018/02 2018/02 2018/02 2018/02 2018/02 2018/02	/16 01:18:10 /16 01:18:10 /16 01:18:10 /16 01:18:10 /16 01:18:10 /16 01:18:10 /16 01:18:11 /16 01:18:11 /16 01:18:15 /16 01:18:15	L1 DIP L2 DIP L3 DIP L1 INT L2 INT L3 INT L2 RVC L3 RVC L3 RVC L3 RVC L2 RVC	0.0 0.0 0.0 0.0 230.0 229.9 229.8 230.0	00:00:03:601 00:00:03:601 00:00:03:600 00:00:03:200 00:00:03:199 00:00:03:199
				Back

В списке событий регистрируются все пороговые значения напряжения отдельных фаз. Пороговые значения соответствуют международным стандартам или пользовательским настройкам - можно использовать определяемые пороговые значения. В таблице событий регистрируются соответствующие данные о событиях: время старта, продолжительность, шкала напряжения, тип события, фаза и т.д.

В таблицах событий используются следующие сокращения:

- **DIP** падение напряжения
- **SWL** скачок напряжения
- **INT** прерывание напряжения
- РВК внезапное изменение напряжения

3.4 Гармоники

Гармонические компоненты позволяют измерять гармонические и межгармонические составляющие вплоть до 100-й включительно. Также измеряются данные о соотношениях, такие как компоненты постоянного тока, суммарные гармонические искажения (THD). Гармоническими компонентами являются периодические деформации напряжения, тока или мощности. График формы волны можно рассматривать как комбинацию нескольких графиков формы волны различной частоты и амплитуды. Анализатор также измеряет влияние каждого из этих элементов на основной сигнал. Результаты отображаются на экране гистограмм. Гармонические компоненты часто индуцируются нелинейными нагрузками, такими как источники питания постоянного тока в компьютерах, телевизорах и электродвигателях с регулировкой скорости. Гармонические компоненты могут привести к перегреву трансформаторов, кабелей и двигателей.

Примечание: При номинальной частоте 400 Гц гармоники могут быть измерены только до 12 раз, а интерстициальные гармоники отсутствуют.

Harmonics		230V;50	Hz;CTCOC)80	(11) 20	018-02-16	02:12:58
			<u>ئ</u> 0:01:0	06			
H3 34.50V	НЗ	15.00 %	f H3	150.00	lz H3	-0.0°	
100% •••		0 4E	- 10	de 30	JE	40 45	50
THD DC 1 5	1	10 15	20 2	25 30	35	40 45	50
UII	L1 L N	.2 L3 ALL	On I-HARI	M. Off	Meter		Hold

Экран гистограмм

На экране гистограмм отображается процентное воздействие каждого компонента полного или базового сигнала. Сигнал без искажений должен показывать значение 1-й гармоники 100%, в то время как другие компоненты будут иметь значение 0: на практике такой ситуации не происходит, потому что всегда будут присутствовать компоненты гармоник, которые искажают сигнал.

Синусоида искажается путем добавления к ней гармонических компонентов. Уровень искажений представляет собой процентное значение THD (общее гармоническое искажение). На дисплее могут также отображаться процентные соотношения компонентов постоянного тока и соотношение для каждого коэффициента гармоник. Кнопки 【 ◀ 】 【 ▶ 】 используются для размещения курсора на данном столбике. Заголовок экрана показывает напряжение/ток гармоники, соотношение гармонических составляющих, частоту и угол фазы. Если все столбцы не могут быть отображены на экране одновременно, можно отобразить следующий набор столбцов, передвигая курсор влево или вправо на экране.

Описание функциональных кнопок:

[F1]: Выбор типа гармонической составляющей: напряжение, ток.

[F2]: Выбор отображаемых гистограмм: L1, L2, L3, N или все

[F3] : Отображение значений межгармонического включения/выключения

[F4]: Открыть экран таблицы

[F5] : Переключение между опциями СТАРТ и СТОП.

Экран таблицы

Harmonics	230V;50	0Hz;CTC0080	(11) 20	18-02-16 02:13:39
		0:01:47		
	L1:			N:
Uthd	18.03	45.16	46.03	100.00
Udc	0.27	0.26	0.88	0.00
lthd	68.31	100.00	100.00	100.00
Idc	0.00	52.35	22.98	100.00
Uharm 1	100.00	100.00	100.00	100.00
Uharm 2	0.00	2.24	6.75	60.18
Uharm 3	15.00	34.60	34.60	39.86
		%r <mark>%f</mark>	Harmonic	Hold

Экран таблицы показывает все параметры гармонических составляющих, такие как гармоническое напряжение, гармонический ток, межгармоническое напряжение и межгармонический ток. Кнопки вверх/вниз позволяют перейти на следующую страницу.

Описание функциональных кнопок:

- **[F3]** : выберите %f или %r для отображения гармоник.
- [F4] : Возврат к столбиковой диаграмме гармоник
- [F5]: Переключение между опциями СТАРТ и СТОП.
- Инструкции
- %f: процентная доля гармонической составляющей и основного сигнала.
- %r: процентная доля гармонической составляющей и среднеквадратического значения сигнала.

3.5 Мощность и энергия

Функция «Мощность и энергия» отображает таблицу со всеми важными параметрами мощности. В соответствующем окне тенденции отображаются значения измеренных параметров относительно времени в таблице. Измерение мощности соответствует стандарту IEEE1459.

🔶 Экран таблицы

Power&Energy	230V;5	0Hz;CTC0130	1 🔁 🛃 / 201	.8-02-17 08:28:01
		0:00:18		
	L1	L2	L3	Total
P(kW)	0.00	0.00	0.00	0.00
S(kVA)	0.00	0.00	0.00	0.00
Q(kvar)	₹0.00	} 0.00	} 0.00	∔ -0.00
PF	0.00	0.00	0.00	0.00
cosΦ	1.00	-0.56	-0.94	
tanΦ	9999.00	9999.00	9999.00	9999.00
Urms(V)	0.05	0.06	0.06	
Irms(A)	0.54	0.07	0.08	
		Energy	Trend	Hold

Описание параметров:

Р (кВт): активная мощность.

S (кВА): полная мощность, результат умножения тока и напряжения. Q1 (квар): реактивная мощность основной синусоиды.

PF: коэффициент мощности, активная мощность, разделенная на полную мощность.

созФ: коэффициент смещения, косинус значения угла между основным напряжением и током.

tanФ: отношение реактивной мощности к активной.

Urms: среднеквадратичное значение напряжения.

Irms: квадратный корень тока.

индуктивная нагрузка +: ёмкостная нагрузка

Q1: метод расчета следующий:

Векторная реактивная мощность основного значения:

 $\mathbf{Q}_{1\mathrm{X}} = \mathbf{U}_{1\mathrm{X}} \cdot \mathbf{I}_{1\mathrm{X}} \cdot \sin(\varphi \mathbf{u}_{1\mathrm{X}} - \varphi \mathbf{i}_{1\mathrm{X}})$

Системная реактивная мощность основного значения: $Q_1^+ = 3 \cdot U_1^+ \cdot I_1^+ \sin(\varphi u_1^+ - \varphi i_1^+)$

Суперскрипт + означает положительную составляющую последовательности

Описание функциональных кнопок:

[F3]: Отображает таблицу под экраном мощности и энергии,

которая показывает потребление энергии в каждой фазе и в целом.

[F4] : Переход к экрану тенденций.

[F5]: Переключение между опциями СТАРТ и СТОП.

Экран мощности и энергии

Power&Energy	230V;5	0Hz;CTC0130	1 🔁 🛃 / 201	18-02-17 08:38:01
		0:10:18		
	L1	L2	L3	Total
P(kW)	0.00	0.00	0.00	0.00
S(kVA)	0.00	0.00	0.00	0.00
Q(kvar)	₹0.00	+ 0.00	} 0.00	∔ -0.00
PF	0.00	0.00	0.00	0.00
cosΦ	1.00	-0.95	-0.90	
kWh	0.00	0.00	0.00	0.00
kVAh	0.00	0.00	0.00	0.00
kvarh	0.00	0.00	0.00	0.00
	Reset	Close Energy	Trend	Hold

Описание параметров:

kWh: активная энергия kVAh: полная энергия Kvar: реактивная энергия

Описание функциональных кнопок:

- [F2] число, показанное на дисплее, будет сброшено до 0
- **[F3]** : Закрывает экран таблицы.
- **[F4]** : Переход к экрану тенденций.
- [F5] : Переключение между опциями СТАРТ и СТОП.

3.6 Мерцание

Колебания описывают мерцание освещения в результате изменения напряжения Конструкция анализатора питания. полностью IEC61000-4-15«Мерцание соответствует стандарту счетчика». Анализатор преобразует шкалу и время изменения напряжения в «коэффициент нарушения», вызванного мерцанием лампы в 60 Вт. Высокий уровень мерцания означает, что это будет раздражать большинство людей. Изменения напряжения могут быть относительно небольшими. Измерение оптимизировано для ламп, питающихся от **120В/60Гц** или **230В/50Гц**. Экран тенденции сети отображает изменения в текущем обнаружении колебаний по отношению ко времени.

Примечание: Функция мерцания не используется для измерения напряжения питания 400 Гц.

🔶 Таблица

Flicker	230V;50Hz;C	TC0130		02-16 03:20:16
		:10:18		
	L1			
Pinst	1.82	1.82	1.82	
Pst	0.96	0.96	0.96	
Plt	0.00	0.00	0.00	
			Trend	Hold

Описание функциональных кнопок:

[F4]: Переход к экрану тенденций PF5.

【F5】: Переключение между опциями СТАРТ и СТОП. Описание параметров:

Pinst: Мгновенное мерцание

Pst: Краткосрочное мерцание (измеряется за десять минут).

Plt Долгосрочное мерцание (измеряется в течение двух часов).

3.7 Асимметрия

Колебания отображают соотношение между фазами напряжения и тока. Результаты измерений основываются на базовой частотной составляющей (50 или 60 Гц, используются симметричные В 3-фазном источнике питания сдвиг фаз между компоненты). напряжениями и между токами должен быть близок к 120°. Режим асимметрии предоставляет таблицу измерений векторную И диаграмму.

🔶 Таблица

Unbalance	230V;50Hz	z;CTC0130	2018-	02-16 03:54:47
Freq = 50.00 Hz	6	0:00:42		
	Uneg	Uzero	Ineg	Izero
Unbal.(%)	0.0	0.0	0.0	0.0
	L1			N
Ufund(V)	230.02	229.99	229.99	0.00
lfund(A)	100.01	99.98	99.99	0.00
ΦU(°)	0.0	-120.0	-240.0	-145.2
ΦI(°)	-360.0	-120.0	-240.0	-131.1
Φŀ-U(°)	0.0	0.0	0.0	14.1
		_	Vector	Hold

Описание функциональных кнопок:

[F4]: Переход к экрану векторной диаграммы.

[F5]: Переключение между опциями СТАРТ и СТОП.

Описание параметров:

Uneg: Отрицательная составляющая асимметрии напряжения

Ineg: Отрицательная составляющая асимметрии тока

Uzero: Нет асимметрии напряжения

Izero: Нет асимметрии тока

Ufund: Основное напряжение **Ifund:** Основной ток

ФU(°): Угол основного напряжения ФI(°): Угол основного тока

ФІ-U(°): Угол между основным напряжением и током

Угол напряжения и тока каждой фазы зависит от угла опорного напряжения А (L1).

🔶 Вектор

Показывает фазовую зависимость между напряжениями и токами на векторной диаграмме, разделенной на части по 30 градусов. Вектор опорного напряжения **A** (L1) направлен горизонтально. Дополнительные цифры включают: процент отрицательных колебаний напряжения и тока, процент отсутствия колебаний напряжения и тока, основное фазное напряжение и фазный ток, частота, фазовые углы. Описание функциональных кнопок:

[F1]: Диапазон измеряемых параметров: V отображает все напряжения; А отображает все токи. L1, L2, L3 отображает фазовые напряжения и ток одновременно.

[F4]: Возврат к экрану колебаний.

[F5]: Переключение между опциями СТАРТ и СТОП.

3.8 Неопределённые состояния

Анализатор может записывать диаграммы формы волны высокого разрешения для многих видов интерференции. Анализатор может отображать кратковременные диаграммы формы волны напряжения и тока в определенный момент интерференции. Это позволяет проверить диаграммы формы волны при переходном состоянии.

Переходные состояния — это кратковременные пики на диаграмме формы волны напряжения. В таких состояниях энергия настолько велика, что может создавать помехи в работе чувствительных электронных цепей или даже приводить к их повреждению. Диаграмма формы волны регистрируется каждый раз, когда напряжение превышает допустимые пределы. Можно сохранить до 100 событий. Частота дискретизации 163,84кС/с.

Отображение графиков формы волны

Описание функциональных кнопок:

[F1] : Воспроизведение сохраненных диаграмм формы волны переходных состояний.

[F2]: Форма волны будет автоматически подстраиваться под размер экрана

[F3] : Включить/выключить курсор

[F4] : Включить/выключить функцию Zoom

[F5] : Переключение между опциями СТАРТ и СТОП.

На следующем рисунке показаны записанные переходные события:

3.9 Пусковой ток

Пусковые токи записываются анализатором. Пусковые токи — это увеличение тока, возникающее при подключении к системе больших нагрузок (или низкоомных нагрузок). Такие токи обычно

стабилизируются после того, как нагрузка достигает нормальных эксплуатации. Например, пусковой условий ток асинхронного двигателя может быть в десять раз больше его номинального рабочего тока. Пусковой ток — это «одноразовый» режим измерения, который регистрирует напряжение и текущую динамику после наступления события, связанного с током. Запуск происходит, когда текущая кривая График тенденций строится от превышает установленные пределы. экрана. Предварительная информация позволяет правого края проверить, какие явления произошли до появления пускового тока.

Отображение тенденций

С помощью кнопок направления в меню пускового тока можно установить предел возбуждения: ожидаемое время пускового тока, номинальный ток, пороговое и гистерезисное значение. Максимальный ток определяет вертикальную высоту (потолок) отображаемого в определяет Порог данный момент окна. значение тока, при превышении которого начнется запись тенденции. Время запуска - это время между возбуждением и моментом, когда ток падает до значения гистерезиса; этот период обозначается на графике тенденции двумя вертикальными маркерами. В экрана отображаются заголовке среднеквадратические значения всех фаз во время запуска. Если опция «Курсор» включена, то в месте расположения курсора отображается значение rms.

Описание функциональных кнопок:

- [F1]: Переключение отображаемых параметров
- **[F2]** : Доступ к списку событий, связанных с пусковым током.
- [F3]: Включить/выключить курсор
- **[F4]** : Включить/выключить функцию Zoom
- [F5] : Переключение между опциями СТАРТ и СТОП.

Список событий

Inrush		3P WYE	臣	111 2018-02-21 05:55:58
EVENTS :	1/1	0:00:2	35	
	TIME	TYPE	LEVEL	DURATION
2018/0	2/21 05:5	5:31 L1 INRUSH	395.0	00:00:00:008 🔶
				Back

3.10 Запись курса

Эта функция может быть использована для записи напряжения и тока, частоты дискретизации до 20k и может быть установлена длительность. Параметры на экране ниже могут быть настроены.

. i lapaint	гры не	a onpo			Billaoi
Wave	3P	WYE		 2018-07-2	7 15:12:30
Memory A	vailable:		19.61G		
Sampling	rate:		5 k		
Duration:			1m		
Save as:			Wave-1		
Immedi	ate				
 Timed 					
	Year		2018		
	Month		7		
	Day		27		
	Hours		15		
	Minutes		15		
Tab					Start

WAV-файл может быть сгенерирован после завершения записи, и пользователь может просмотреть его с помощью компьютерного программного обеспечения.

3.11 Регистратор

Функции журнала используются для хранения пакета данных измерений для выбранного параметра с регулируемыми интервалами от 1 с до 1 часа. После каждого интервала записываются максимальные, минимальные и средние значения каждого выбранного

параметра и начинается обратный отсчет до следующей записи. Весь процесс длится до тех пор, пока не истечет установленное время записи; кроме того, можно свободно определять параметры, подлежащие записи.

Нажмите кнопку 【 MENU 】, используйте кнопки направления для выбора функции DVR, нажмите 【 ENTER 】, чтобы войти в меню конфигурации DVR.

Logger	230V;50Hz;CTC0130	(2018-0:	2-18 06:38:35
Memory Available:	832M		
Interval:	✓ 1s		
Duration:	2 h		
Save as:	Logger-2		
Immediate			
 Timed 			
Year	2018		
Month	2		
Day	18		
Hours	6		
Minutes	43		
Tab Pa	ram		Start

Пользователь может проверять доступную память, выбирать параметры параметра регистратора, а также устанавливать интервал записи, время записи и имя сохраняемого файла. Затем нажмите (F5), чтобы начать.

Файл журнала хранится на SD-карте в формате CSV, который можно открыть, например, в EXCEL из Office 2007 или более поздней версии. Каждый файл регистратора может зарегистрировать до 7200 данных, каждый 7200 данных будут сгенерированы как один файл, например, установка интервала регистратора на 1 с, длительность регистрации до 4 часов, будет сгенерировано 2 файла регистратора как Журнал 1.csv и Журнал -1_1.csv.

Нажмите 【F2】, чтобы войти в интерфейс настройки параметров, использовать клавишу направления и 【ENTER】, чтобы выбрать параметры записи, а затем нажмите кнопку 【F5】, чтобы подтвердить.

🔶 Экран таблицы

Lo	ogger		3P WYE			~ /	2018	-02-18 06	6:55:35
	Freq =	49.98 Hz		٢	0:00:05				
			L1		L2				
	Urms(V)		0.04		0.03	0.03		0.04	
			L1						
	Ucf		6.8		5.0	4.6		7.0	
			L1						
	Uthd		48.6		40.1	39.1		52.5	
			L1						
	Udc(V)		0.00		0.00	0.00		-0.01	
						Save		Sto	op

На экране таблицы окне отображаются все данные измерений выбранных параметров в режиме реального времени. Используйте клавиши влево/вправо для перехода на следующую страницу отображения данных.

Описание функциональных кнопок:

【F4】: Запись данных

[F5] : Остановка регистратора

3.12 Мониторинг

Примечание: Функция мониторинга не используется для измерения напряжения питания 400 Гц.

Мониторинг качества энергии отображается в виде гистограмм. Этот экран показывает, соответствуют ли требованиям важные параметры качества энергии. Эти параметры включают в себя:

- 1 Среднеквадратическое напряжение
- 2 Гармонические компоненты
- 3 Мерцание

4 Провалы и скачки (SWL, DIP), Прерывания (INT), Внезапные изменение напряжения (RVC)

5 Асимметрия и частота

Мониторинг качества энергии обычно предполагает длительный период наблюдения. Минимальное

время измерения - 2 часа. Максимальное время измерения - 1 неделя. Большинство гистограмм имеют широкую базу, указывающую на регулируемый временной предел (например, 95% времени в рамках этого предела), и узкий пик, указывающий на постоянный предел, 100%. При превышении одного обоих равный или пределов соответствующий столбец изменится с зеленого на красный. Пунктирные горизонтальные линии на графике обозначают положение 100-процентного предела и регулируемого предела.

Важность графика с широкой базой и узким пиком объясняется ниже на примере диаграммы среднеквадратического напряжения. Например, номинальное напряжение 220 В с допуском ±15% (диапазон допуска 187...253 В). Мгновенное среднеквадратичное напряжение постоянно контролируется анализатором, который вычисляет среднее значений, измеренных через 10-минутные интервалы, и каждое из этих средних значений сравнивается с диапазоном допуска.

Предел 100% означает, что средние значения 10 минут должны всегда (т.е. для 100% времени или со 100% вероятностью) находиться в заданном диапазоне. График станет красным, если среднее значение 10 минут превысит допустимый предел.

Регулируемый предел, например, 95% (т.е. вероятность 95%) означает, что 95% от 10-минутных средних значений должны находиться в пределах допуска. Предел 95% менее строгий, чем предел 100%. По этой причине связанный с этим диапазон допусков, как правило, сужается. Для 220 В это может быть ±10% (диапазон допусков 198В ... 242В).

Столбики для падений/прерываний/внезапных изменений являются узкими и представляют собой количество превышений допустимых пределов, которые имели место в течение всего периода наблюдения. Это число регулируется (например, до 20 падений в неделю). При превышении предела столбик изменит цвет на красный.

Можно использовать ранее установленный предел или определить свой собственный. Примером ранее установленного предела является предел в соответствии с PL-EN50160.

В таблице ниже показаны аспекты мониторинга качества энергии:

Параметр	Доступные	Пределы	Средний
	гистограммы		интервал
V rms	3, по одному на каждую фазу	вероятность 100%: верхний и нижний предел Вероятность х%: верхний и нижний предел	10 минут
Гармоники	3, по одной на каждую фазу	100% вероятность: верхний предел Вероятность х%: верхний предел	10 минут
Мерцание	3, по одному на каждую фазу	100% вероятность: верхний предел Вероятность х%: верхний предел	2 часа
Провалы и Скачки/ Прерывания/ Внезапные изменения напряжения	4, по одному на каждый параметр, относящийся ко всем 3 фазам	Допустимое количество событий	1/2 цикла rms
Асимметрия	1, применяется ко всем 3 фазам	100% вероятность: верхний предел Вероятность х%: верхний предел	10 минут
Частота	1, измерение опорного напряжения Вход A/L 1	100% вероятность: верхний и нижний предел Вероятность х%: верхний и нижний предел	10 секунд

Monitor	230V;50Hz;0	CTC1535 🧲	2017-06-15 07:45:34
	Ū.	0:16:39	
22.30V	903.0%	MAX 22.30V	MIN 22.30V
			Limit
			Allow :d%
Vrms	Iu. –	Ý ľ	 ∱→ Hz

Качество энергии - экран мониторинга

Мониторинг качества энергии может быть включен нажатием кнопки [MONITOR], при этом запуск возможен немедленно (Immediate) или

с задержкой (Timed). Курсор можно поместить на выбранной гистограмме с помощью кнопок направления. Измеренные данные, отображаемые на данной стобце, отображаются в заголовке экрана.

Параметрам качества мощности, rms напряжения, гармоники и мерцания присваивается столбик для

каждой фазы. Слева направо эти три столбики относятся к фазам A (L1), B (L2) и C (L3). Параметры Провалов/ Прерываний/ Внезапных изменений напряжения / Скачков и асимметрии / Частоты имеют по одному столбику для каждого параметра, представляющего качество в трех фазах.

В строке заголовка используются следующие символы

| : Установка x% от предельного значения

: Предельное значение 100%

Подробные данные измерений доступны с помощью функциональных клавиш:

[F1]: Среднеквадратическое напряжение: таблица событий, тенденции.

[F2]: Гармоника: гистограммы, таблица событий, тенденции.

[F3] : Мерцание: таблица событий, тенденции.

[F4] : Провалы и скачки/ Прерывания/Внезапное изменение напряжения/: таблица событий, тенденции.

[F5] : Асимметрия, частота: таблица событий, тенденции.

Таблица событий

Monitor	3P V	VYE		C 2018	02-18 06:18:57
EVENTS :	1/49	0:34:	21		
	TIME	TYPE	LEVEL	DUI	RATION
2018/02	/18 05:44:37	L1 DIP	0.0		\$
2018/02	/18 05:44:37	L1 INT	0.0		
2018/02	/18 05:44:37	L2 DIP	0.0		
2018/02	/18 05:44:37	L2 INT	0.0		
2018/02	/18 05:44:37	L3 DIP	0.0		
2018/02	/18 05:44:37	L3 INT	0.0		
2018/02	/18 05:54:36	L1 RMS	0.0		
2018/02	/18 05:54:36	L2 RMS	0.0		
2018/02	/18 05:54:36	L3 RMS	0.0		
2018/02	/18 05:54:36	L1 UNBAL	0.0		
2018/02	/18 05:54:36	L1 THD	0.0		
2018/02	/18 05:54:36	L2 THD	0.0		
2018/02	/18 05:54:36	L3 THD	0.0		
		Tren	d	Selected All	Back

В таблице событий отображаются события, произошедшие во время измерения с указанием времени начала, фазы и продолжительности. Сохранение событий:

- События V rms: событие регистрируется каждый раз при превышении 10-минутного общего среднеквадратичного значения
- События гармонических составляющих: событие регистрируется каждый раз при превышении 10-минутного общего значения гармонических составляющих или THD.
- События провалов/ прерываний/внезапных изменений напряжения: регистрируются каждый раз, когда значение любого из этих элементов превышает допустимое значение.
- События асимметрии и частоты: событие регистрируется каждый раз при превышении 10-минутного общего среднеквадратичного значения

Описание функциональных кнопок:

- **[F3]**: Доступ к экрану «Тенденции»
- [F4] : Переключение между всеми и выбранными событиями.
- **[F5]** : Возврат к предыдущему меню.

Экран гистограмм гармоник

На главном дисплее мониторинга системы отображаются наихудшие гармонических составляющих для каждой ИЗ ИЗ трех фаз. Функциональная кнопка (F) отображает экран с гистограммами, процентное соотношение времени, показывающими в течение которого каждая фаза находилась в пределах 25 гармонических составляющих и общее гармоническое искажение (THD). Каждая гистограмма имеет широкую базу (показывающую регулируемый предел, например 95%) и узкий пик (показывающий 100% предел). Гистограмма меняет цвет на красный (с нейтрального зеленого), когда гармоническая составляющая превышает допустимое значение.

Описание функциональных кнопок:

(F1): Выбор назначения гистограммы фазе A (L1), B (L2) или C (L3).

[F4]: Доступ к таблице событий

[F5]: Возврат к предыдущему меню.

Глава 4 Обслуживание и поддержка

4.1 Гарантия

Мы предоставляем гарантию сроком на один год на техническое обслуживание или замену с момента отправки в связи с проверенной проблемой качества продукции. За исключением этих объяснений и описаний в гарантийном талоне, компания не дает никаких других гарантий, ни явных, ни подразумеваемых. Ни при каких обстоятельствах компания не несет ответственности за прямые, косвенные или другие вторичные убытки.

Глава 5 Спецификации

5.1 Измерение частоты

Номинальная	Диапазон измерения	Разрешение	Точность
50 Г Ц	42,50~57,501Ц	0,011Ц	±0,011Ц
60 Гц	51,00~69,00 Гц	0,01 Гц	±0,01 Гц
400 Гц	320~480 Гц	0,01 Гц	±0,01 Гц

Примечание: измерено на входе опорного напряжения А/L1.

3.2 Входы напряжения

Количество входов	4 (3 фазы + нейтральный)
Макс. длительное	1000Vrms
входное напряжение	
Диапазон	По выбору, от 1 В до 1000 В в соответствии с
номинального	IEC61000-4-30
напряжения	
Макс. импульсное	бкВ
пиковое напряжение	
Входной импеданс	4ΜΩ

3.1 Токовые входы

Количество входов	4 (3 фазы + нейтральный)
Тип	Токовый зонд, с мВ-выходом
Макс. входное	10 B
напряжение	
Диапазон входа	В соответствии с токовыми зондами
Входной импеданс	100kΩ

5.4 Система дискретизации

Разрешение	8 16-битных AD-каналов
Частота	163.84 кС/с Тип. (Номинальная частота),
дискретизации	образец 8 каналов синхронно
Дискретизация RMS	4096 баллов за 10/12 циклов (согласно IEC
	61000-4-30)
PLL sync	4096 баллов за 10/12 циклов (согласно
-	IEC61000-4-7)

5.5 Режимы и параметры измерения

Режим измерения	Измеряемые параметры		
Осциллограф	Vrms、Arms、Vkursor、Akursor、Hz		
	Vrms、Vpk、Arms、Apk、CF、 Hz		

Напряжение/Ток/Частота				
Провалы и	V rms1 /2, A rms1 /2, записывают до 1000			
перенапряжения	событий с указанием даты, времени,			
	продолжительности, масштаба и фазы, что			
	позволяет установить пороговое значение.			
Гармоники	1-100, напряжение гармоники, THD			
	напряжение, ток гармоники, THD ток,			
	межгармоническое напряжение,			
	межгармонический ток			
Мощность и энергия	W、VA、 var、 PF、 cosΦ、 tanΦ、 Vrms、			
	Arms、			
	kWh、kVAh、kvarh			
Мерцание	Pinst、Pst、Plt			
Асимметрия	Vneg, Vzero, Aneg, Azero, Vfund, Afund, Hz,			
	угол фазы V, угол фазы A			
Переходные состояния	Vrms, Vkypcop			
Пусковой ток	Пусковой ток, продолжительность пуска, А			
Мониторинг систем				
мониторинг систем	Общее Гармоническое напряжение,			
	искажения Plt Vrms1/2 Arms 1/2 Vneg Ги			
	Скачки Провалы Прерывания Внезалные			
	изменения напряжения Все параметры			
	измеряются одновременно в соответствии			
	со стандартом PL-EN50160.			
Регистратор	Позволяет выбирать большее количество			
• •	параметров и сохранять их через			
	определенные промежутки времени.			

5.6 Диапазон, разрешение и точность измерения

Напряжение/Ток/ Частота	Диапазон измерения	Разрешение	Точность
Vrms (AC+DC)	1~120Vrms 120~400 Vrms 400~1000Vrm s	0,001Vrms 0,01Vrms 0,1Vrms	±0,1% от номинального значения
Vpk	1~1400Vpk	0,01Vpk	±0,5% от номинального значения
V(CF)	1,0~>2,8	0,01.	±5%
Arms (не применяется к ошибке токовой	0.4504	0.014	.0.40(0.44
клеммы)	0~150A	0,01A	±0,1%±0,1A

10m2///	1 2000 1	0.014	
TUMV/A	1~2000A	0,01A	±0,1%±0,1A
1mV/A	10~6000A	0,01A	±0,1%±0,2A
65mV/1000A(AC)			
A(CF)	1-10	0,01	±5%
Номинальная частота			
50 Гц	10 5.57 5		
Номинальная частота	42,5~57,5	0,011Ц	±0,011Ц
60 Fu	51~69	0,01 Гц	±0,01 Гц
ботц	320~480	0 01 Fu	+0 01 Fu
Номинальная частота	010 100	0,0114	_0,0
400 Гц			

Провалы и	Диапазон	Разрешение	Точность
перенапряжения	измерения		
Vrms1/2	0~200% от		
	номинального	0.01Vrms	±0,2%
	напряжения		
Arms1/2	В соответствии		
	с токовыми	0,01A	±1%
	зондами		
Пороговое	Пороговое з	начение р	егулируется в
значение	соответствии с	процентом	от номинального
	напряжения		
	Типы обнаруж	киваемых со	бытий: падения,
	скачки, прерыя	вания, внеза	пные изменения
	напряжения.		
Продолжительность	час-минута-	0,5 цикла	1 период
	секунда-		
	микросекунда		

Гармоники	Диапазон	Разрешение	Точность
	измерения		
Гармонический ряд	1~12		
(400 Гц)	№ п/п		
Межгармонический	1~100		
ряд (400 Гц)	0~99		
Гармонический ряд	0,0~100,0%	0,01%	±0,1%±n×0,1%
(50/60 Гц)	0,0~100,0%	0,01%	±0,1%±n×0,4%
Межгармонический	0,0~100,0%	0,01%	±0,1%±n×0,1%
ряд (50/60 Гц)	0,0~100,0%	0,01%	±0,1%±n×0,4%
Гармоническое	0,0~100,0%	0,01%	±2,5%
напряжение %f	0~6000 Гц	0,01 Гц	0,1 Гц
Гармоническое	-180°~180°	0,1°	± 0,1°
напряжение %r			
Гармонический ток %f			

Гармонический ток %r SNX Частота Фаза			
Абсолютное напряжение	0~1000 B	0,01 B	±1% от показаний (гармоники >1% от номинального значения) ±0,05% показаний (гармоники <1% от номинальной величины)
Абсолютный ток	0~6000A	0,01A	±1% от показаний (гармоники >3% от номинального значения) ±0,05% показаний (гармоники <3% от номинальной величины)

Мощность и	Диапазон	Разрешение	Точность
энергия	измерения		
P, S, Q1,	Max6000MW	0,01кВт	±1%±10
PF	0~1	0,01	СИМВОЛОВ
cosΦ	0~1	0,01.	±0,1%
			±0,1%
кВтч, кВАч, кварх	В зависимости от		±1%±10
	масштабирования зонда и		СИМВОЛОВ
	номинального н		
Мерцание	Диапазон	Разрешение	Точность
(50/60Гц)	измерения		
Pst (10 минут) Plt (2 часа)	0,00~20,00	0,01	±5%

Асимметрия	Диапазон	Разрешение	Точность
	измерения		

Асимметрия	0,0~20,0%	0,1%	±0,1%
напряжения	0,0~20,0%	0,1%	±1%
Асимметрия тока	-360°~ 0°	0,1°	±0,1°
Фаза напряжения	-360°~ 0°	0,1°	±0,5°
Фаза тока			

Быстрое	Диапазон	Разрешение	Точность
изменение	измерения		
напряжения			
Vpk	±6000Vpk	0,01 B	±15%
Vrms	10~1000Vrms	0,01 B	±2,5%
Минимальное	6.5мкс		
время испытания	163,84кC/c		
Частота			
дискретизации			

Пусковой ток	Диапазон	Разрешение	Точность
	измерения		
Плечи	В соответствии	0,01A	±1%±5
	с токовыми		СИМВОЛОВ
	зондами		
Продолжительность	1~32 мин	10ms	±20ms
пуска	регулируемая		

5.7 Комбинации проводов

1P+NEUTRAL	Одна фаза с нейтральным проводом				
1P Split Phase	Раздельная фаза				
1P IT NO	Однофазная система с двухфазными				
NEUTRAL	напряжениями без нейтрального провода				
3P WYE	Система 3-фазная 4-проводная, тип Ү				
3P DELTA	Система дельта 3-фазная 3-проводная (Дельта)				
3P IT	3-фазная тип Ү без нейтрального провода				
3P HIGH LEG	Система дельта 3-фазная 4-проводная с				
	центрально прикрепленным полюсом high leg				
3P OPEN LEG	3-проводная открытая система дельта с двумя				
	трансформаторными обмотками				
2-ELEMENT	3-фазная 3-проводная система без токового				
	датчика на фазе L2/В (метод двух измерителей				
	мощности)				
2.5-ELEMENT	3-фазная 4-проводная схема без датчика				
	напряжения на фазе L2/В				

5.8 Общие черты

Интерфейс				
Интерфейс USB-Host	Копирование сохраненный файл на			
	компьютер с U-диска и затем анализ его с			
	помощью компьютерной программы.			
Интерфейс LAN	Для дистанционного управления			
	анализатором и передачи данных измерений.			
Экран	Цветная ЖК-матрица ТFT			
Размер	5,6 дюйма			
Разрешение	640×480			
Яркость	регулируемая			

Память	
Память Флеш	1G
Микро SD	Стандартная 32G

Корпус	
Капле- и	Степень защиты ІР53 Степень защиты ІР относится
пылезащитный	к самому корпусу и не означает, что изделие может эксплуатироваться вблизи опасных напряжений во влажной среде.

Стандарты		
Метод измерения	IEC61000-4-30 класс A	
Мониторинг качества		
мощности	EN50160	
Мерцание	IEC61000-4-15	
Гармоники	IEC61000-4-7	
Метод измерения потребляемой мощности	IEEE1459	

Окружающие	
условия	
Рабочая	0°C~ 45°C
температура	

Температура	-10°C~45°C
хранения	
Влажность	Относительная влажность 90%
воздуха	

Безопасность				
в соответствии с		IEC61010-1		
		Уровень безопасности: 600V CAT IV 1000V		
		CAT III		
		Степень загрязнения: 2		
Максимальное	600V CAT IV 1000V CAT III			
напряжение на вх	а входе			
напряжения				
Максимальное		10 B		
напряжение на				
токовом входе				
Механические				
Размеры	270мм × 190мм × 66мм			
Bec	2 кг			

Мощность	
Вход блока питания	АС 100-240В 50/60Гц
Выход блока питания	DC 12B 2A
Батарея	Литиевая батарея 7.4В 5200мАч
Время работы от батареи	> 8 часов (уровень яркости экрана 3)
Время зарядки аккумулятора	6 часов

5.9 Спецификация дополнительных токовых зондов

Модель	Диапазон	Коэффициент	Точность	Размер
				[мм]
KLC8C-5A	AC:5A	10mV/A	0,2%	Ф8
CTC0080	AC:50A	10 mV/A	0,2%	Ф8
CTC0130	AC:100A	1 mV/A	0,2%	Ф13
CTC1535	AC:1000A	1 mV/A	1,0%	Φ52
ETCR035AD	AC/DC: 1000A	1 mV/A	3,0%	30x35

SY-1500A	AC:1500A	100 mV/1000A	0,5%+(1% погрешность положения)	Ф110
PY-3000A	AC:3000A	65 mV/1000A	1.0%+(2% погрешность положения)	Ф160
PY-5000A	AC:3000A	50 mV/1000A	1.0%+(2% погрешность положения)	Ф143
SY-6000A	AC:6000A	65mV/1000A	1.0%+(2% погрешность положения)	Ф250

Глава 6 Коды исполнения

Портативный анализатор сетевых параметров NP45	Х	XX	Х	Х
Дополнительное оснащение:	-			
нет	0			
4 шт. катушек Роговского РҮ 3000 А	1			
4 шт. катушек Роговского РҮ 5000 А	2			
4 шт. токовых клещей KLC8C 5 А	3			
4 шт. токовых клещей СТС0080 50 А	4			
4 шт. токовых клещей СТС0130 100 А	5			
4 шт. токовых клещей СТС1535 1000 А	6			
4 шт. токовых клещей ETCR035AD1000A ac/dc	7			
4 шт. катушек Роговского SY 1500A	8			
4 шт. катушек Роговского SY 6000A	9			
Исполнение:				
стандартное		00		
специальное*		XX		
Языковая версия:				
польская/английская версия			М	
Другая			Х	
Приемочные испытания:				
без дополнительных требований				0
с дополнительным сертификатом контроля качества				1
с сертификатом калибровки				2
по согласованию с получателем*				Х

* только по согласованию с производителем

LUMEL

LUMEL S.A.

ул. Сулеховска, 1, 65-022 Зелена Гура, Польша тел.: +48 68 45 75 100, факс +48 68 45 75 508 www.lumel.com.pl

Техническая информация: тел.: (+48 68) 45 75 143, 45 75 141, 45 75 144, 45 75 140 e-mail: <u>export@lumel.com.pl</u>